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Abstract: In this paper, we evaluate three variants of new quality parameters for medical image fusion. The 

aims of our evaluated parameters are based on an image quality index. We perform several simulations which 

show that our parameters are compliant with subjective evaluations and can therefore be used to compare 

different image fusion methods or to find the best parameters for a given fusion algorithm. 
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I. Introduction 
The rapid and significant advancements in medical imaging technologies and sensors, lead to new uses 

of medical images in various healthcare and bio-medical applications including diagnosis, research, treatment 

and education etc. Different modalities of medical images reflect different information of human organs and 

tissues, and have their respective application ranges. For instance, structural images like magnetic resonance 

imaging (MRI), computed tomography (CT), ultrasonography (USG) and magnetic resonance angiography 

(MRA) etc. provide high-resolution images with excellent anatomical detail and precise localization capability. 

Whereas, functional images such as position emission tomography (PET), single-photon emission computed 

tomography (SPECT) and functional MRI (fMRI) etc., provide low-spatial resolution images with functional 

information, useful for detecting cancer and related metabolic abnormalities. A single modality of medical 

image cannot provide comprehensive and accurate information. Therefore, it is necessary to correlate one 

modality of medical image to another to obtain the relevant information. Moreover, the manual process of 

integrating several modalities of medical images is rigorous, time consuming, costly, subject to human error, 

and requires years of experience. Therefore, automatically combining multimodal medical images through 

image fusion (IF) has become the main research focus in medical image processing [1], [2].  

Image fusion is a methodology concerned with the integration of multiple images, e.g. derived from 

different sensors, into a composite image that is more suitable for the purposes of human visual perception or 

computer-processing tasks. The widespread use of image fusion methods, in military applications, in 

surveillance, in medical diagnostics, etc, has led to a rising demand of pertinent quality assessment tools in order 

to compare the results obtained with existinting method or to obtain an optimal setting of parameters..Quality 

assessment of fused images is often carried out by human visual inspection [3]. Objective performance 

assessment is a difficult issue due to the variety of different application requirements and the lack of a clearly 

defined ground-truth. Indeed, various fusion algorithms presented in the literature  [4] have been evaluated by 

constructing some kind of ideal fused image and using it as a reference for comparing with the experimental 

fused results [5, 6]. Mean squared error (MSE) based metrics are widely used for these comparisons. A 

restricted number of objective fusion performance measures have been proposed where the knowledge of 

ground-truth is not assumed. Xydeas and Petrovié [7] propose a metric that evaluates the relative amount of 

edge information that is transferred from the input images to the fused image. In mutual information is 

employed for evaluating fusion performance. 

 

II. Literature Survey 
Based on the methodology of fusion process, the earlier approaches are categorized into two categories 

as pixel based image fusion and transform based image fusion. The simplest spatial-based method is to take the 

average of the input images pixel by pixel. However, along with its simplicity, this method leads to several 

undesirable side effects, such as reduced contrast. To improve the quality of fused image, various approaches 

are propose in earlier based on the block division if source images. Here the source images are initially 

decomposed into blocks and the optimal blocks are chosen for the fusion. The motivation of this methodology 

lies in the fact that an optimized block size could be more effective than a fixed block size. This type of 
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algorithm may not only improve the convergence between each pixel in the fused image but may also easily 

produce block effect. And also the finding of a suitable block-size is a problem. A large block is more likely to 

contain portions from both focused and defocused regions. This may lead to selection of considerable amount of 

defocused regions. On the other hand, small blocks do not vary much in relative contrast and hence difficult to 

choose from. Moreover, small blocks are more affected by misregistration problems. To solve these issues, a 

novel optimal method for multi-focus image fusion using differential evolution algorithm is presented in [8]. 

The source images are first decomposed into blocks. Then, the sharper blocks are selected by employing a 

sharpness criterion function. The selected blocks are finally combined to construct the fused image. Similarly 

the quad-tree structure method is proposed in [9] to solve the problem of how to determine the size of sub-

blocks. Further two more block based approaches are proposed in [10] and [11] to evaluate the local content 

(sharp) information of the input source images by which the blocking effect in the fused image will reduces 

efficiently. Though these approaches achieved an efficient fusion performance, the blocking effect is not 

eliminated completely. Another region segmentation approach is proposed in [12] to find the regions through 

the morphological filtering. Then, image matting technique is applied to obtain the accurate focused region of 

each source image. Finally, the focused regions are combined together to construct the fused image. Through 

image matting, the proposed fusion algorithm combines the focus information and the correlations between 

nearby pixels together [13].However, these methods may generate artificial information and discontinuous 

phenomena at the boundaries of focused regions because the boundary cannot be determined accurately. These 

effects will reduce the visual fidelity of the fused image. 

To achieve more efficient results, the medical image fusion is shifted towards the transform domain 

through the accomplishment of MST, including the discrete wavelet transform (DWT) [3, 7, and 37], framelet 

transform [14], contourlet transform [15], and non-sub sampled contourlet transform (NSCT) [1, 4, 6]. By 

focusing on the properties of wavelet filters, some extended wavelet based image fusion approaches are 

proposed based on Wavelet Packet Transform (WPT) [16] and Wavelet Frame Transform (WFT) [17]. Wavelet 

transform suffers from lack of shift invariance & poor directionality and Stationary Wavelet Transform and 

Wavelet Packet Transform overcome these disadvantages. Further the wavelet frame transform is aliasing free 

and translation invariant. In [18], a new image fusion approach is proposed based on the Discrete Wavelet 

transform and type-2 fuzzy logic. Here the main is avoiding the extra noise in the fused image. In this method, 

source images are decomposed into low-level subband, high-level subbands using DWT. Next, low-level sub-

images are fused using type-2 fuzzy fusion rule and high-level sub-images are fused using average fusion rule. 

Finally, inverse DWT is applied on the fused components to obtain the fused image. However, wavelet 

transform cannot effectively represent the line singularities and plane singularities of the images.  

To overcome these shortcomings with wavelet transform, the further research is focused through the 

contourlet transform and Non-Subsampled Contourlet Transform. The main difference between the Contourlet 

Transform and Non-Subsampled Contourlet Transform is shift invariant property. Recently Hui Huang et al., 

[19] propose a novel image fusion algorithm that combines nonlinear approximation of contourlet transform 

[20] with image regional features. The most important coefficient bands of the contourlet sparse matrix are 

retained by nonlinear approximation. However, the up- and down-sampling process of Contourlet 

decomposition and reconstruction results in the CT lacking shift-invariance and having pseudo-Gibbs 

phenomena in the fused image. The Non-Subsampled Contourlet Transform inherits the advantages of 

Contourlet Transform, while also possessing shift-invariance and effectively suppressing Pseudo-Gibbs 

phenomena. Hence Non-Subsampled Contourlet Transform is chosen as a prominent transform for multimodal 

medical image fusion and so many approaches are proposed based on Non-Subsampled Contourlet Transform 

[22-24]. 

 

III. Non-Subsampled Contourlet Transform 
The Non-Subsampled Contourlet Transform [28] is developed based on the theory of contourlet 

transform only. Non-Subsampled Contourlet Transform is advantageous in the provision of shift invariance, 

boosts the directional selectivity and reduces the significance of pseudo-Gibbs phenomena effectively. The 

decomposition process of the Non-Subsampled Contourlet Transform is divided into two phases, i.e., the Non-

sub Sampled Pyramids (NSP) and the Non-sub Sampled Directional Filter Bank (NSDFB). The former performs 

multiscale decomposition and the later provide direction decomposition. The NSP divides image into a low 

frequency sub band and a high frequency sub band in each level. For a given k level of decomposition the NSP 

generates k+1 sub-band images, consists of one low frequency sub band image and the remaining k sub band 

images are high frequency sub band images. Subsequently, the NSDFB divides the high frequency sub band 

image into directional sub band images. For a given level of decomposition l, 2l directional sub band images 

will be obtained for a particular high frequency sub band image. 
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Figure.1 MRI Image decomposition through Non-Subsampled Contourlet Transform for two levels 

 

After the low frequency component is decomposed iteratively by the same way, an image is finally 

decomposed into one low frequency sub image and a series of high frequency directional subband images 

(Σ2𝑙𝑗𝑘𝑗=1), where in 𝑙𝑗denotes the number of decomposition directions at the 𝑗 scale. Figure.1 represents the 

schematic of Non-Subsampled Contourlet Transform. Hence the NSDFB offers more accurate directional 

information through the bands obtained in multi-directional orientations to produce more accurate results. Thus, 

the Non-Subsampled Contourlet Transform ensures the optimal frequency selectivity and also an essential shift 

invariance property on the aspect of non-subsampled operation. Here an important to note that is the dimensions 

of obtained sub-images is in identical fashion. In addition, the Non-Subsampled Contourlet Transform also 

reduces the misregistration effects over the obtained results. Thus, the proposed model considered Non-

Subsampled Contourlet Transform for medical image effusion. 

 

IV. A New Fusion Quality Parameters 

We would like to present a brief introduction to the image quality index. Given two real-valued sequences x = 

(x1,x2 ….xn) and y = (y1,y2 ….yn). Let 𝑥  denotes the mean of x, let  𝜎𝑥
2 and 𝜎𝑥𝑦  be the variance of x and 

covariance of x, y respectively. 

𝜎𝑥
2 = 

1

𝑛−1
  𝑥𝑖 − 𝑥  2𝑛

𝑖=1 , 𝜎𝑥𝑦  = 
1

𝑛−1
  𝑥𝑖 − 𝑥   𝑦𝑖 − 𝑦  𝑛

𝑖=1  

Now we calculate  

Q0 = 
4𝜎𝑥𝑦 𝑥 𝑦 

 𝑥 2+𝑦 2  𝜎𝑥
𝑥+𝜎𝑦

2 
     (1) 

This can be decomposed as  

 

Q0 = 
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦

2𝑥 𝑦 

𝑥 2+𝑦 2

2𝜎𝑥𝜎𝑦

𝜎𝑥
2+𝜎𝑦

2   (2) 

 

In above equation the first component is the correlation coefficient between x and y. The value Q0 = Q0(x, y) is a 

measure for the similarity of the vectors x and y and takes values between -l and 1. 

 

Since image signals are generally non-stationary, it is more appropriate to measure the image quality 

index Q0 over local regions and then combine the different results into a single measure. Note that in this case 

the values xi and yiare positive grey-scale values. Now the second component corresponds to the luminance 

distortion and it has a dynamic range of [0, l ]. The third factor is measures the contrast distortion and its range 

is also [0, 1]. The maximum value Q0 = 1 is achieved when x and y are identical. 

 

(i)LOACA QUALITY INDEX (Q0): We  propose to use a sliding window approach, starting from the top-left 

corner of the two images A, B, a sliding window of fixed size (with n pixels) moves pixel by pixel over the 

entire image until the bottom-right corner is reached. For each window w, the local quality index Q0 𝐴, 𝐵 𝜔  is 

computed for the values A (i, j) and B (i,j) where pixels (i, j) lie in the sliding window w. Finally, the overall 

image quality index Q0 is computed by averaging all local quality indices: 

Q0 (a, b) = 
1

 𝑊 
 𝑄0 𝐴, 𝐵 𝜔 𝜔𝜀𝑊       (3) 

Where W is the family of all windows and  𝑊 is the cardinality of W 

We have to compare their quality index with existing image measures such as the MSE. Their main conclusion 

was that their new index out  performs the MSE, and they believe this to be due to the index’s ability of 

measuring structural distortions, in contrast to the MSE which is highly sensitive to the L
2
 energy of errors. 
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We use the image quality index Q0 defined in (3) to define a quality index Q (A, B, F) for image fusion. Here A, 

B are two input images and F is the fused image. The index Q (A, B, F) should express the 'quality' of the fused 

image given the inputs A,B. 

We denote by s 𝐴 𝜔  some saliency of image A in window ω. It should reflect the local relevance of image a 

within the window ω, and it may depend on contrast, sharpness, or entropy. Given the local saliencies s 𝐴 𝜔  
and s 𝐵 𝜔  of the two input images A and B. we compute a local weight λ 𝜔 between 0 and 1 indicating the 

relative importance of image  A compared to image B, the larger λ 𝜔 ,the more weight is given to image A. A 

typical choice for λ 𝜔 is  

 

λ 𝜔 = 
s 𝐴 𝜔 

s 𝐴 𝜔 +s 𝐵 𝜔 
        (4) 

Now we define the fusion quality index Q(A, B, F) as 

Q(A,B,F) = 
1

 𝑊 
  λ 𝜔 𝑄0 𝐴, 𝐹 𝜔 +  1 − λ 𝜔  𝑄0 𝐵, 𝐹 𝜔  𝜔𝜀𝑊         (5) 

Thus, in regions where image A has a large saliency compared to B, the quality index Q (A, B, F) is mainly 

determined by the input image A. On the other hand, in regions where the saliency of B is much larger than that 

of A, the index Q (A, B, F) is determined mostly by input image B. 

 

(ii) WEIGHTED FUSION QUALITY INDEX (QW): our model has produced a quality index which gives an 

indication of how much of the salient information contained in each of the input images has been transferred 

into the fused image without introducing distortions. However, the different quality measures obtained within 

each window have been treated equally. This is in contrast with the human visual system (HVS) which is known 

to give higher importance to visually salient regions in an image. We now define another variant of the fusion 

quality index by giving more weight to those windows where the saliency of the input images is higher. These 

correspond to areas which are likely to be perceptually important parts of the underlying scene. Therefore the 

quality of the fused image in those areas is of more importance when determining the overall quality index. The 

overall saliency of a window is defined as  

C(ω) = max (s 𝐴 𝜔 , s 𝐵 𝜔 ) 

The weighted fusion quality index is then defined as 

𝑄𝑊 𝐴, 𝐵, 𝐹 =   c(ω)  λ 𝜔 𝑄0 𝐴, 𝐹 𝜔 +  1 − λ 𝜔  𝑄0 𝐵, 𝐹 𝜔  𝜔𝜀𝑊            (6) 

 

Where c(ω) = C(ω) /   C(ω′) 𝜔 ′𝜀𝑊   
 

There are various other ways to compute the weights c(ω), (for example, we could define C(ω) = s 𝐴 𝜔 +
s 𝐵 𝜔 ), but we have found that the choice made here is a good indicator of important areas in the input images. 

 

(iii) EDGE- DEPENDENT FUSION QUALITY INDEX (QE): We define one final modification of the fusion 

quality index that takes into account some aspect of the HVS, namely the importance of edge information. Note 

that we can evaluate Qw in (6) using 'edge images' instead of the original grey-scale images A, Band F. Let us 

denote the edge image corresponding with A by𝐴′. Now we combine Qw(A, B, F) and Qw(A' , B',F') into a so-

called edge-dependent fusion quality index by  

𝑄𝐸 𝐴, 𝐵, 𝐹 = 𝑄𝑊 𝐴, 𝐵, 𝐹  . 𝑄𝑊 𝐴′, 𝐵′, 𝐹′ 𝛼    (7) 

Where 𝛼 is a parameter that expresses the contribution of the edge images compared to the original images 

 

V. Simulation Results 

This section illustrates the details of performance evaluation of proposed framework quantitatively and 

qualitatively. To verify the performance of proposed approach, an extensive simulation is carried out over 

various types of medical images and like MRI, CT, MR-T1 and MR-T2. Here the source images of size 

256*256 are considered and the simulation is carried through MATLAB software. The obtained fused images 

are shown in Figs. 2-4. 

In this paper, three objective evaluation measurements parameters are adopted to evaluate the fusion 

performance. There are local quality index (𝑄0) [24], weighted fusion quality index (𝑄𝑊) [24], edge-dependent 

fusion quality index (𝑄𝐸) [24], the range of 𝑄0, 𝑄𝑊, 𝑄𝐸, lies between 0 and 1. 
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  (a)                       (b)                          (c)                        (d) 

           Figure.2. Test images set 1     (a) CT (b) MRI 

                          Test Images set 2     (c) CT (d) MRI 

 

 
    (e)                  (f)                (g)                          (h) 

Figure.3. Test images set 3      (e) MR-T1 (f) MR-T2 

                Test Images set 4     (g) MR-T1 (h) MR-T2 

 

 
(a1)                  (b1)                  (c1)                (d1)              (e1)             (f1)  

 
(a2)                  (b2)              (c2)                (d2)           (e2)             (f2) 

 
(a3)                (b3)            (c3)                (d3)          (e3)             (f3) 

 
                 Fig.4. Fused images by a1-a4 DWT[3],b1-b4 CT[11],c1-c4 NSCT[16],d1-d4[25], 

                           e1-e4 NSCT[26] and f1-f4 Proposed approach. 
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Table.1. Local quality index (𝑄0) 

 

 
Fig 5. Local quality index (𝑄0) observation 

 

Table.2.Weighted fusion quality index (𝑄𝑤 ) 

 

 
  Fig.6. Weighted fusion quality index (𝑄𝑤 ) observation 
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Table.3. Edge-dependent fusion quality index (𝑄𝐸) 

 

 
Fig.7.Edge-dependent fusion quality index (𝑄𝐸) observation 

 

VI. Conclusions 

In this paper we have discussed some new objective quality measures for image fusion. Our measures 

are easy to calculate and applicable to various input modalities. In particular, our measures give good results on 

variable quality input images since it takes into account the locations as well as the magnitude of the distortions. 

There are several areas in which our quality measures can be improved or extended. From the above analysis, it 

can be observed that the proposed attained a greatest improvement in the calculated quality parameters give 

better than the existed results. In the future, we can be extended to accomplish through a new metrics based on 

the band selection approach by which Quality enhancement in the fused image. 
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